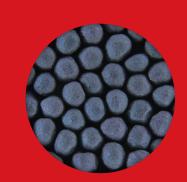
# **CARBOPROP**


# Intermediate-density ceramic proppant

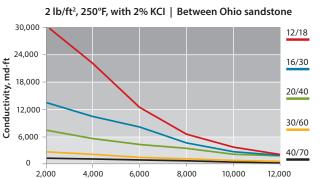
#### **Features**

- Consistent, high-quality, engineered intermediate-density proppant
- Exceptional roundness and sphericity
- Frequently selected for moderate to higher stress oil and gas wells
- Available in five standard sizes—
  12/18, 16/30, 20/40, 30/60 and 40/70

#### **Benefits**

- Excellent long-term conductivity
- Minimizes wear and tear on production and pumping equipment
- Cost-effective alternative to bauxite proppant in targeted applications
- Broad range of proppant sizes ensures availability for your specific frac program



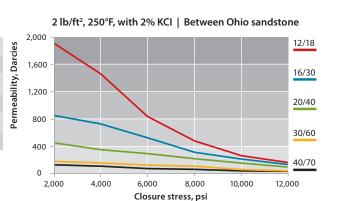

# Optimum fracture conductivity for moderate to higher stress wells

CARBOPROP® intermediate-density proppant provides optimum fracture conductivity in moderate-depth, higher-stress wells. CARBOROP is a cost-effective alternative to available bauxite proppant.

## Long-term conductivity

#### Reference conductivity, md-ft @ 250°F (121°C)

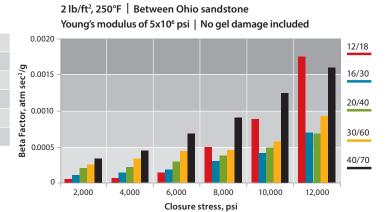
| Closure<br>stress [psi] | 2 lb/ft²<br>12/18 | 2 lb/ft²<br>16/30 | 2 lb/ft²<br>20/40 | 2 lb/ft²<br>30/60 | 2 lb/ft²<br>40/70 | 2 lb/ft²<br>70/140 |
|-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
| 2,000                   | 30,940            | 13,400            | 7,290             | 2,870             | 1,680             | 375                |
| 4,000                   | 22,040            | 10,920            | 5,840             | 2,440             | 1,350             | 300                |
| 6,000                   | 12,260            | 7,940             | 4,820             | 2,010             | 1,015             | 250                |
| 8,000                   | 6,750             | 4,620             | 3,540             | 1,575             | 770               | 210                |
| 10,000                  | 3,810             | 2,930             | 2,400             | 990               | 570               | 185                |
| 12,000                  | 2,270             | 2,120             | 1,900             | 665               | 440               | 165                |




Closure stress, psi

### Reference permeability, Darcies @ 250°F (121°C)

| Closure<br>stress [psi] | 2 lb/ft²<br>12/18 | 2 lb/ft²<br>16/30 | 2 lb/ft²<br>20/40 | 2 lb/ft²<br>30/60 | 2 lb/ft²<br>40/70 | 2lb/ft <sup>2</sup><br>70/140 |
|-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------------|
| 2,000                   | 1,900             | 875               | 455               | 175               | 140               | 27                            |
| 4,000                   | 1,400             | 725               | 365               | 150               | 110               | 22                            |
| 6,000                   | 820               | 545               | 305               | 130               | 80                | 19                            |
| 8,000                   | 470               | 330               | 230               | 105               | 65                | 17                            |
| 10,000                  | 280               | 215               | 160               | 70                | 50                | 15                            |
| 12,000                  | 175               | 155               | 130               | 50                | 40                | 14                            |


Reference conductivity and permeability are measured with a single phase fluid under laminar flow conditions in accordance with API RP 19D. In an actual fracture, the effective conductivity will be much lower due to non-Darcy and multiphase flow effects. For more information, please refer to SPE Paper #106301 - "Determining Realistic Fracture Conductivity and Understanding its Impact on Well Performance –Theory and Field Examples."





## **Beta factors**

| Closure<br>stress [psi] | Beta factor<br>12/18 | [atm sec²/g<br>  16/30 | ]<br>  20/40 | 30/60   | 40/70   |
|-------------------------|----------------------|------------------------|--------------|---------|---------|
| 2,000                   | 0.00006              | 0.00010                | 0.00021      | 0.00027 | 0.00035 |
| 4,000                   | 0.00008              | 0.00013                | 0.00024      | 0.00034 | 0.00047 |
| 6,000                   | 0.00015              | 0.00017                | 0.00030      | 0.00044 | 0.00070 |
| 8,000                   | 0.00050              | 0.00028                | 0.00037      | 0.00047 | 0.00091 |
| 10,000                  | 0.00087              | 0.00043                | 0.00049      | 0.00059 | 0.00127 |
| 12,000                  | 0.00175              | 0.00072                | 0.00069      | 0.00093 | 0.00167 |



Beta factor data reported by Stim-Lab Consortium, PredK Feb 2002.

# Physical and chemical properties

## Typical sieve analysis [weight % retained]

| U.S. Mesh [mesh]                                  | Microns     | 12/18 | 16/30 | 20/40 | 30/60 | 40/70 | 70/140 |
|---------------------------------------------------|-------------|-------|-------|-------|-------|-------|--------|
| +12 mesh                                          | +1700       | 2     |       |       |       |       |        |
| -12+14 mesh                                       | -1700+1400  | 42    |       |       |       |       |        |
| -14+16 mesh                                       | -1400+1180  | 40    | 3     |       |       |       |        |
| -16+18 mesh                                       | -1180+1000  | 15    | 28    |       |       |       |        |
| -18+20 mesh                                       | -1000+850   | 1     | 46    | 4     |       |       |        |
| -20+30 mesh                                       | -850+600    |       | 23    | 75    | 3     |       |        |
| -30+40 mesh                                       | -600+425    |       |       | 21    | 68    | 3     |        |
| -40+50 mesh                                       | -425+300    |       |       |       | 28    | 70    |        |
| -50+70 mesh                                       | -300+212    |       |       |       | 1     | 26    | 1      |
| -70+100 mesh                                      | -212+150    |       |       |       |       | 1     | 51     |
| -100+140 mesh                                     | -150+106    |       |       |       |       |       | 43     |
| -140+200 mesh                                     | -106+75     |       |       |       |       |       | 5      |
| Median particle diameter [microns]                |             | 1328  | 936   | 672   | 453   | 324   | 154    |
|                                                   | @10,000 psi | 14.0  | 5.0   | 2.8   | 2.3   | 2.0   |        |
| API/ISO crush test<br>% by weight fines generated | @12,500 psi | 20.0  | 9.4   | 5.3   |       |       |        |
| 70 by weight filles generated                     | @15,000 psi |       |       |       |       |       | 5      |
|                                                   |             |       |       |       |       |       |        |

## Typical additional properties

| . )                           |                           |                                                |       |        |
|-------------------------------|---------------------------|------------------------------------------------|-------|--------|
| Roundness                     | 0.9                       | Apparent specific gravity                      | 3.27  | +-0.04 |
| Sphericity                    | 0.9                       | Absolute volume [gal/lb]                       | 0.037 |        |
| Bulk density [lb/ft³] [g/cm³] | 117 +-0.04<br>1.88 +-0.07 | Solubility in 12/3 HCI/HF acid [% weight loss] | 4.5   |        |

All data represents typical values.

Sizing requirements: A minimum of 90% of the tested sample should fall between the designated sieve sizes. These specifications meet the recommended practices as detailed in API RP 19C.

Talk to CARBO to find out how we can help you enhance your production.



