CARBOISP LITE

High-transport, low-density, low-crush ceramic proppant

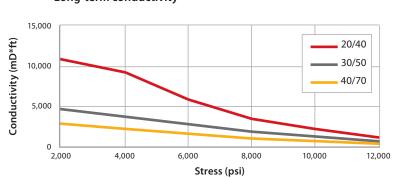
Features

- Bulk density and specific gravity match sand and lightweight ceramics
- Similar crush resistance compared to intermediate strength proppants
- Improved proppant transport
- Compatible with all fluid systems
- Low manufacturing and logistics CO, footprint

Benefits

- ISP performance with lightweight density savings
- Delivers a 20% higher volumetric yield and 20% lower proppant requirement and savings compared to conventional ISPs
- Enhanced proppant transport allows the use of lower viscosity and cleaner frac fluids
- Reduces pumped water requirements, easier and faster cleanup times
- Low CO₂ footprint compared to conventional ISPs

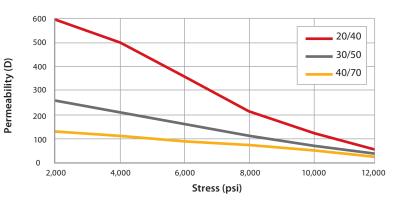
CARBOISP LITE is an innovative proppant technology that combines the characteristics of an intermediate-strength proppant with all the advantages of lightweight ceramics, providing optimum fracture conductivity and proppant transport.


CARBOISP LITE allows operators to reduce their overall operations CO_2 carbon footprint, and its low density enables a higher volumetric yield compared to conventional ISPs – directly translating into savings on required volumes, logistics and storage costs, reducing water and additives requirements, and allowing easier and faster completions cleanup and remediation times.

Long-term conductivity and permeability

Reference conductivity, md-ft @250°F (121°C), 2 lb/ft2

Stress (psi)	20/40	30/50	40/70	
2,000	11,300	4,900	2,570	
4,000	9,100	3,800	2,070	
6,000	6,200	2,950	1,750	
8,000	3,650	1,950	1,380	
10,000	2,010	1,300	930	
12,000	1,005	650	570	


Long-term conductivity

Reference permeability, md-ft @250°F (121°C), 2 lb/ft²

Stress (psi)	20/40	30/50	40/70
2,000	600	260	135
4,000	500	209	110
6,000	353	166	95
8,000	215	113	77
10,000	122	78	53
12,000	64	41	34

Long-term permeability

Reference conductivity and permeability are measured with a single phase fluid under laminar flow conditions in accordance with API RP 19D. In an actual fracture, the effective conductivity will be much lower due to non-Darcy and multiphase flow effects. For more information, please refer to SPE Paper #106301 - "Determining Realistic Fracture Conductivity and Understanding its Impact on Well Performance – Theory and Field Examples."

CARBOISP LITE

High-transport, low-density, low-crush ceramic proppant

Physical and chemical properties

Typical sieve analysis (weight % retained)

1700	4				
-1700+1180	91	5			
-1180+850	5	93	7		
-850+600		2	90	4	
-600+425			3	90	2
-425+250				6	90
-250+212					8
ameter (µm)	1374	1001	730	522	334
@10,000 psi	15.2	9.0	3.6	2.0	2.0
[kpsi]	6	10	12	17	19
	-1180+850 -850+600 -600+425 -425+250 -250+212 ameter (μm) @10,000 psi	-1180+850 5 -850+600 -600+425 -425+250 -250+212 ameter (μm) 1374 @10,000 psi 15.2	-1180+850 5 93 -850+600 2 -600+425 -425+250 -250+212 ameter (μm) 1374 1001 @10,000 psi 15.2 9.0	-1180+850 5 93 7 -850+600 2 90 -600+425 3 -425+250 -250+212 ameter (μm) 1374 1001 730 @10,000 psi 15.2 9.0 3.6	-1180+850 5 93 7 -850+600 2 90 4 -600+425 3 90 -425+250 6 -250+212 ameter (μm) 1374 1001 730 522 @10,000 psi 15.2 9.0 3.6 2.0

Sizing requirements: a minimum of 90% of the tested sample should fall between the designated sieve sizes. These specifications meet the recommended practices as detailed in API RP 19C.

Typical additional properties

Roundness	0.9
Sphericity	0.9
Bulk density (lb/ft²)	96
(g/cm³)	1.56
Apparent specific gravity	2.70
Absolute volume [gal/lb]	0.044
Solubility in 12/3 HCI/HF acid (% weight loss)	1.5

All data represent typical values.

