CARBOBEAD SCOUR

High-performance ceramic scouring media

Features and benefits

- High-quality ceramic media engineered for superior strength and durability
- Exceptional roundness, sphericity and smoothness reduce mechanical wear and costly downtime
- Chemically inert, non-hazardous and produces no respirable silica dust
- Light color and reduced contamination enhances the end product brightness
- Hard, durable ceramic body improves recycling to decrease media consumption
- Cost-effective alternative to sand and competing ceramic media

Engineered to outperform sand in a wide variety of industrial applications

CARBOBEAD[®] SCOUR high-performance ceramic scouring media is engineered to provide a unique combination of consistent thermal, physical and chemical properties. These characteristics provide economic and performance advantages that improve overall scouring efficiency and final product quality compared to sand and other competing synthetic media types.

Physical properties

Typical sieve analysis (weight % retained)

Product size	Mesh Millimeters	5/8 2.36- 4.00	8/14 1.40- 2.36	12/18 1.00- 1.70	16/20 0.850- 1.180	20/40 0.425- 0.850	30/50 0.300- 0.600	40/70 0.212- 0.425
Sieve size (mesh)	Microns							
-4+6	-4750+3350	21						
-6+8	-3350+2360	79	1					
-8+12	-2360+1700		89	4				
-12+16	-1700+1180		10	91	5			
-16+20	-1180+850			5	93	7		
-20+30	-850+600				2	90	4	
-30+40	-600+425					3	90	5
-40+50	-425+300						6	72
-50+70	-300+212							22
-70+100	-212+150							1
-100+140	-150+106							
-140+200	-106+75							
Median particle diameter (D50, μm)		3100	1897	1374	1001	730	522	332
Effective size (D10, μm)		2495	1742	1211	916	648	440	285
Uniformity coefficient (D60/D10)		1.20	1.13	1.14	1.18	1.19	1.20	1.23

Typical additional properties

Roundness	0.9		
Sphericity	0.9		
Bulk density (lb/ft³) (g/cm³)	97 1.57		
Apparent density (g/cm ³)	2.71		
Crush test (% by weight fines generated @ 7,500 psi)	7.7		
Absolute volume (gal/lb)	0.044		
Hardness (Mohs)	7+		
Vickers hardness (HV)	800		

All data represents typical values.

Chemical composition: Aluminosilicate ceramic

Sizing requirements: A minimum of 90% of the tested sample should fall between the designated sieve sizes. These specifications meet the recommended practices as detailed in API RP 19C.

Talk to CARBO to find out how we can improve your end-product quality and reduce operating costs. Learn more at +1 800 551 3247 | carboindustrial.com

